
JOURNAL OF THEORETICAL

AND APPLIED MECHANICS

61, 1, pp. 175-187, Warsaw 2023
https://doi.org/10.15632/jtam-pl/158574

ON THE YIELD SURFACE OF A TYPICAL BENDING-DOMINANT

PERIODIC LATTICE METAMATERIAL

Yongjun Wang, Jinxing Liu

Faculty of Civil Engineering and Mechanics, Jiangsu University, Zhenjiang, China

Corresponding author Jinxing Liu, e-mail: jxliu@mails.ucas.ac.cn

A theoretical method for analyzing the initial yield of a typical bending-dominant peri-
odic lattice (BDPL) is established. Based on the principle of strain energy equivalence, the
macroscopic effective stiffnesses of lattices are calculated. An empirical formula is employed
to consider the contributions of both the axial force and bending moment. The initial yield
surface of BDPL can be figured out by comparing the effective stress of each strut to the
yield strength of the matrix material. The method is applicable to various BDPLs, which
we believe is a helpful extension to the method for lattices comprising axial-tension bars in
the literature.
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1. Introduction

With recent developments of additive manufacturing technologies, lattice metamaterials have
been attracting more and more attentions from both industry and academia. It is a promising
option in designs of metamaterials to choose lattice-type microstructures. Lattice materials can
be divided into two types: stretching-dominant lattice and bending-dominant lattice (Deshpande
et al., 2001). Stretching-dominant lattices are famous for lightweight, high specific strength and
stiffness (Evans et al., 2001; Evans, 2001) and have been applied in many areas. Unlike stretching-
-dominant lattices, the bending-dominant lattices are used to provide other extraordinary me-
chanical properties such as negative Poisson’s ratio (Chen et al., 2017), compression-induced
twist (Frenzel et al., 2017), negative effective swelling (Liu et al., 2016) and so on.

The macroscopic effective yield strength of lattice materials is an important index to eval-
uate its mechanical performance. It is also considered that yield behavior is a failure precursor
of lattice materials and it plays a significant role in engineering designs. Thus, a comprehen-
sive understanding on the yield behavior is of great necessity. An analytical initial yield surface
equation of the octet-truss lattice material, which is a typical stretching-dominant lattice, was
established by Deshpande et al. (2001). Wang and McDowell (2004, 2005) made a detailed
theoretical derivation of six kinds of two-dimensional beam lattice structures and gave corre-
sponding initial yield surfaces under both biaxial and triaxial stresses. Yield behavior of a range
of honeycombs under uniaxial loads have also been investigated so far (Gibson, 2003; Wang and
McDowell, 2005). Xue et al. (2005) proposed a phenomenological elliptic yield surface criterion
based on the yield strength of stressing in different directions. Fan and Yang (2006) deduced
three-dimensional yield surfaces of several stretching-dominant lattice materials.

To date, unlike stretching-dominant lattices, yield properties of BDPLs have been rarely
reported. It can be imagined that BDPLs can have a very different yield response when compared
with the stretching-dominant lattices because of the coupling of axial deformation and bending
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deformation. This is our present focus. We assume that the in-plane (xy plane) deformation can
be taken as a plane strain problem.

This paper is structured as follows. In Section 2, a new method used to investigate the
yield behavior of BDPL is briefly presented. In Section 3, based on the principle of strain energy
equivalence (PSEE) and finite element simulation, we obtain the constitutive equation of BDPL.
The geometry equation is derived in Section 4. In Section 5, the stiffness matrix of a unit cell is
calculated. The initial yield surfaces of BDPL are obtained in Section 6. The paper ends with
conclusions in Section 7.

2. Material and methods

2.1. Material

The schematic diagram of BDPL is shown in Fig. 1a. Based on the previous work (Wang
et al., 2020), we adopt a specimen with an enough number of cells to reduce the influence of
boundary conditions. Geometric parameters T , H and W the thickness, height and width of
BDPL, respectively. The unit cell is shown in Fig. 1b, which is composed of four curved bars
with the same curvature radius r and central angle α. For each strut, its thickness is b and the
spacing between two ends is L. The dimensions of BDPL are as follows: H = W = 100mm,
T = 10mm, b = 1mm, L = 4.762mm and the central angle α = 60◦. The adopted matrix
material is Aluminum, with density ρ = 2700 kg/m3, Young’s modulus E and Poisson’s ratio ν
70GPa and 0.33, respectively, and yield strength σY = 110MPa.

Fig. 1. Schematic of the lattice: (a) the whole structure and (b) the unit cell

2.2. Methods

The present research roadmap is shown in Fig. 2. Based on the principle of strain energy
equivalence, the macroscopic effective stiffnesses of the lattice are calculated. The relation be-
tween the displacements of lattice joints and the macroscopic uniform strain prescribed can be
obtained by combining a method of particular displacement fields (MPDF) and finite element
analyses. Furthermore, by analyzing the relation between deformation and stress of a single pe-
riodic unit cell, forces on both ends of each curved strut can be expressed as a linear function
of the macroscopic stresses. An empirical formula for calculating the effective stress is employed
to consider the contributions of both the axial force and bending moment. Finally, the initial
yield surface of BDPL can be figured out by comparing the effective stress of each curved strut
to the yield strength of the matrix material.
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Fig. 2. The present research roadmap

3. Constitutive equation

A representative unit cell is used to replace BDPL, as shown in Fig. 3. The effective modulus of
elasticity of BDPL is calculated by using an equivalent uniform medium with the same effective
mechanical properties. This equivalence is established by equalizing the strain energies of two
media (discrete and continuous) under the same loading and boundary conditions. Usually,
a uniform strain field is prescribed for simplicity. According to the principle of strain energy
equivalence, we have

Udiscrete = Ucontinuum (3.1)

The strain energy of the discrete unit cell is expressed as

Udiscrete =
n∑

i=1

U i (3.2)

where U i represents the energy stored in the i-th curved strut, n stands for the total number of
struts in a single unit cell. The strain energy of the equivalent continuum is written as

Ucontinuum =
1

2

∫

V

σε dV (3.3)

It is notable that in Eq. (3.3), V = At under the assumed plane strain condition, and the
integral over V is actually over A. This meaning for volume V remains unchanged throughout
this article.

Fig. 3. Geometry of discrete and continuum unit cells

Under the plane stress conditions, the continuum constitutive equation is given in terms of
the effective stiffness matrix Cij by

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σ22
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(3.4)
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where the elastic constants C11, C22, C12 and C21 in the matrix are calculated by finite ele-
ment simulations one by one by prescribing proper uniform strain εij fields. The designated
displacements on the boundaries are given by

ui = εijXj i, j = 1, 2 (3.5)

and Xi represents the coordinate of the boundary. Considering C12 = C21, the strain energy of
continuum is written as

U =
V

2
σijεij = [C11(ε11)

2 + C22(ε22)
2 + C66(ε12)

2 + 2C12(ε11)(ε22)] (3.6)

Equation (3.6) can be numerically determined once the corresponding strain energy is obtained
from finite element examples. For example, under the loading conditions shown in Fig. 4a, namely
ε11 is specified and ε22, ε12 = 0, the strain energy can be expressed as

U =
V

2
C11(ε11)

2 (3.7)

from which, the elastic constant C11 can be obtained. Similarly, the other elastic constants C22,
C12 and C66 can also be obtained by various specific finite element examples:

— for C22: ε11 = ε12 = 0, ε22 = const

U =
V

2
C22(ε22)

2 (3.8)

— for C12: ε11 = const , ε12 = 0, ε22 = const

U =
V

2
[C11(ε11)

2 + C22(ε22)
2 + 2C12(ε11)(ε22)] (3.9)

— for C66: ε11 = ε22 = 0, ε12 = const

U =
V

2
C66(ε12)

2 (3.10)

Once the values of C11, C22, C12 and C66 are obtained, Young’s modulus and Poisson’s ratio
of BDPL can be given as

E1 =
C11C22 − C

2
12

C22
E2 =

C11C22 − C
2
21

C11

ν12 =
C12
C22

ν21 =
C21
C11

(3.11)

The finite element software Abaqus is used to simulate the response of lattice plates under above
various boundary conditions. The BDPL plate has 21 curved struts along horizontal and vertical
directions respectively. Element B21 with a mesh sweeping seed size of 0.1mm was employed for
simulations. Each strut between joints is divided into 10 beam elements to ensure the accuracy
of simulation results, which is confirmed by comparing with the results under finer 15 elements
per strut (error less than 1%). The parameter setting mentioned in Section 2.1 is employed. In
the following, we list out the boundary conditions for calculating the effective moduli.

For calculating C11 (Fig. 4a and Eq. (3.7))

u(0, y, z) = v(0, y, z) = 0 v(x, 0, z) = v(x,H, z) = 0

u(W,y, z) = const w(x, y, 0) = w(x, y, T ) = 0
(3.12)
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Fig. 4. (a), (c), (e) and (g) – Loading and boundary conditions for calculating C11, C22, C12 and C66,
respectively; (b), (d), (f), (h) – comparison between undeformed and deformed configurations

where, under the plane strain condition, three displacement components are functions of x
and y, and are irrelated to z, i.e. u(x, y, z) = u(x, y). The formula including z is simple for
explicit prescribing the boundary conditions in FEM simulations.



180 Y. Wang, J. Liu

For calculating C22 (Fig. 4c and Eq. (3.8))

u(0, x, y, z) = u(W,y, z) = 0 u(x, 0, z) = v(x, 0, z) = 0

v(x,H, z) = const w(x, y, 0) = w(x, y, T ) = 0
(3.13)

For calculating C12 (Fig. 4e and Eq. (3.9))

u(0, y, z) = 0 v(x, 0, z) = 0

u(W,y, z) = v(x,H, z) = const w(x, y, 0) = w(x, y, T ) = 0
(3.14)

For calculating C66 (Fig. 4g and Eq. (3.10)

u(0, y, z) = v(0, x, y, z) = 0 v(x,W, z) = const

u(x,W, z) = 0 w(x, y, 0) = w(x, y, T ) = 0
(3.15)

where u, v and w represent the displacements along the x, y and z direction, respectively.
Young’s modulus and Poisson’s ratio of BDPL in the x and y direction are obtained from

Eq. (3.11)

E1 = E2 = 6.50GPa ν12 = ν21 = −0.32 (3.16)

It can be seen that the studied BDPL has a negative Poisson’s ratio.
The continuum constitutive equation under the plane stress condition is expressed by the

stiffness matrix






σ11
σ22
σ12







=






C11 C12 0
C21 C22 0
0 0 C66






︸ ︷︷ ︸

Effective stiffness matrix







ε11
ε22
ε12







= 109






7.24 −2.31 0
−2.31 7.24 0
0 0 1.00












ε11
ε22
ε12







(3.17)

Then the compliance matrix S can be obtained by inverting the effective stiffness matrix
shown in equation (3.17), i.e.







ε11
ε22
ε12







= 10−10






1.54 0.49 0
0.49 1.54 0
0 0 10.00






︸ ︷︷ ︸

S







σ11
σ22
σ12







(3.18)

4. Geometry equation

The relation between the displacements of lattice joints and the macroscopic uniform strain
prescribed can be obtained by combining the method of particular displacement fields and
finite element analyses. As shown in Fig. 5, a unit cell comprises five joints and each joint has
translational and rotational degrees of freedom. Symbols ui, vi and ϕi, represent horizontal,
vertical displacement and rotation angle, respectively, and the subscript i is the joint number.
The specified uniform strain fields on the BDPL shown in Fig. 4a are ε11 = 10

−3, and
ε11 = ε22 = 0. The displacements and rotation angle of each unit cell joint are extracted,
as shown in the second column of Appendix A. Similarly, under the uniform strain fields like
ε22 = 10

−3, ε11 = ε12 = 0 (Fig. 4c) and ε12 = 5 ·10
−4, ε11 = ε22 = 0 (Fig. 4g), the displacements

and rotation angle of each unit cell joint are also obtained in Appendix A. The relation between
displacements of each joint in the unit cell and different macroscopic uniform strain fields can
be derived from Appendix A. The geometry equation is simply written as
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Fig. 5. (a) Schematic of the studied BDPL, (b) translational and rotational degrees of freedom and
(c) the curved beam composing the unit cell

{

u0 v0 ϕ0 · · · u4 v4 ϕ4
}T
= B15×3

{

ε11 ε22 ε12
}T

(4.1)

The specific equation is found as given in Appendix B.

5. Stiffness matrix of unit cell

In order to obtain the stiffness matrix of a unit cell, it is needed to investigate the stiffness
matrix of each curved strut in the unit cell firstly. We continue to use the method of particular
displacement fields. We take out a curved strut from the unit cell, fix five degrees of freedom
and give a prescribed value to the remaining one. The forces and bending moments of endpoints
can be obtained from Abaqus. In this Section, the prescribed displacement and rotation angle
are 10−4mm and 10−4 rad, respectively.
Taking 1-0 strut as an example, the stiffness matrix of a single curved strut is obtained as







Fx1
Fy1
M1

F
(1−0)
x0

F
(1−0)
y0

M
(1−0)
0







= A(1−0)







u1
v1
ϕ1
u0
v0
ϕ0







(5.1)

The calculated parameters of A(1−0) are given in Appendix B.
The incidence matrices in Eqs. (4.1) and (3.18) are denoted as B and S, respectively. The

displacement and strain incidence matrix B(1−0) for the joint pair comprising 0 and 1 can be
extracted from B. Finally, the forces on both ends of each curved strut can be expressed as a
linear function of the macroscopic stresses







Fxi
Fyi
Mi

F
(i−0)
x0

F
(i−0)
y0

M
(i−0)
0







= A(i−0)B(i−0)S







σ11
σ22
σ12







i = 1, 2, 3, 4 (5.2)
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6. Initial yield surfaces of BDPL

6.1. Empirical formula

An empirical formula (Liu et al., 2008) for calculating the effective stress is employed to
consider the contributions of both the axial force and bending moment. The effective stress in
the curved strut is defined as

σ =
N

A
+ a
(|Mi|, |Mj |)max

Wz
(6.1)

As shown in Fig. 6, where N is the normal force in the considered strut, Mi and Mj are the
bending moments at the joint i and j of the strut, Wz is the section modulus. The coefficient a
plays a role in regulating the contribution of the bending moment to the effective stress. Lilliu
and van Mier (2003) set the coefficient to 0.005 (Karihaloo et al., 2003; Liu et al., 2007). In order
to investigate the effects of this parameter, a is set to 0.005 and 0.0075.
For a particular stress status, it is necessary to find out the curved strut easiest to yield

among the unit cells subjected to the prescribed macroscopic strain field.

Fig. 6. (a) Curved strut, (b) schematic of end forces and moments of the unit cell

6.2. Yield surface calculations

According to the geometric parameters in Section 2.1, the section area A of the strut and
section modulus Wz are 10

−5m2, (1/6) · 10−3m3, respectively. The linear function between the
effective stresses and forces in (ε11, ε22) space is easily obtained from Eq. (5.2).
For 1-0 strut, we have

N = Fx1 cos 30
◦ + Fy1 sin 30

◦ (6.2)

From equation (6.1), the effective stress can be expressed in the form

|σ| =

∣
∣
∣
∣
∣

(N

A

)

max

∣
∣
∣
∣
∣
+

∣
∣
∣
∣
∣
a
M0
Wz

∣
∣
∣
∣
∣
max

= |(−4.77σ11 + 0.36σ22)max|+ |(600aM0)max| (6.3)

where, the operation of simply considering the maximum effective normal stress indicates that
the source material has been assumed as isotropic.
The value of a is set to 0.005, the effective stress can be calculated as

|σ| =

∣
∣
∣
∣
∣

(N

A

)

max

∣
∣
∣
∣
∣
+
∣
∣
∣α
M0
Wz

∣
∣
∣
max
=







7.05σ11 + 2.73σ22 for σ11 > 0, σ22 > 0

7.05σ11 − 2.73σ22 for σ11 > 0 σ22 < 0

−7.05σ11 + 2.73σ22 for σ11 < 0 σ22 > 0

−7.05σ11 − 2.73σ22 for σ11 < 0 σ22 < 0

(6.4)
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the yield surface of 1-0 strut is given by

σ22
σY
=







−2.58
σ11
σY
+ 0.37 for σ11 > 0 σ22 > 0

2.58
σ11
σY
− 0.37 for σ11 > 0 σ22 < 0

2.58
σ11
σY
+ 0.37 for σ11 < 0 σ22 > 0

−2.58
σ11
σY
− 0.37 for σ11 < 0 σ22 < 0

(6.5)

where σY is the yield stress of the matrix material.

Similarly, for curved struts 2-0, 3-0 and 4-0, the yield surfaces are calculated as follows:

— 2-0

σ22
σY
=







−0.39
σ11
σY
+ 0.14 for σ11 > 0 σ22 > 0

0.39
σ11
σY
− 0.14 for σ11 > 0 σ22 < 0

0.39
σ11
σY
+ 0.14 for σ11 < 0 σ22 > 0

0.39
σ11
σY
− 0.14 for σ11 < 0 σ22 < 0

(6.6)

— 3-0

σ22
σY
=







−2.58
σ11
σY
+ 0.37 for σ11 > 0 σ22 > 0

2.58
σ11
σY
− 0.37 for σ11 > 0 σ22 < 0

2.58
σ11
σY
+ 0.37 for σ11 < 0 σ22 > 0

−2.58σ11
σY
− 0.37 for σ11 < 0 σ22 < 0

(6.7)

— 4-0:

σ22
σY
=







−0.39
σ11
σY
+ 0.14 for σ11 > 0 σ22 > 0

0.39
σ11
σY
− 0.14 for σ11 > 0 σ22 < 0

0.39
σ11
σY
+ 0.14 for σ11 < 0 σ22 > 0

−0.39
σ11
σY
− 0.14 for σ11 < 0 σ22 < 0

(6.8)

From equations (6.5) to (6.8), we find that strut 1-0 has the same yield surface with strut
3-0, while strut 2-0 has the same yield surface with strut 4-0. The initial yield surface of BDPL
in (σ11, σ22) space is sketched in Fig. 7. The region beyond dashed lines represents the yield of
each strut in the stress space. It can be considered that the area within the red solid lines keeps
elastic without any strut yielding. In Fig. 8, the influence of parameter a is discussed. With
an increase of a, the area surrounded by the yield surface decreases. The straight struts lattice
can be considered as a special curved strut lattice with the central angle α = 0◦. In Fig. 9, the
yield surface of the straight struts lattice is calculated, and it can be seen that the tensile and
compressive strength of the straight struts lattice is better than the curved struts lattice.
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Fig. 7. The initial yield surface in (σ11, σ22) space of unit cell of BDPL

Fig. 8. The influence of a on initial yield surfaces of the unit cell of BDPL in (σ11, σ22) space

7. Conclusions

In this study, based on the principle of strain energy equivalence, the macroscopic effective
stiffnesses of the corresponding equivalent continuum are calculated. The relation between the
displacements of lattice joints and the macroscopic uniform strain prescribed have been obtained
by combining the particular-displacement method and finite element analyses. By analyzing the
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Fig. 9. The initial yield surface of the straight struts lattice (α = 0◦) and the curved struts lattice
(α = 60◦) in (σ11, σ22) space

relation between deformation and stress of a single periodic unit cell, the forces on both ends
of each curved strut can be expressed as a linear function of the macroscopic stresses. The
yield surfaces are calculated successfully. Compared with the existing methods in the literature,
the proposed method is convenient to deal with the yield problem of bending-dominant lattice
metamaterials such as the curved strut lattice.
Particularly, an empirical formula for calculating the effective stress has been employed

to consider the contributions of both the axial force and bending moment, by introducing a
parameter a adjusting the relative contribution of bending to yield strength. It is found that a
larger value of a leads to a lower yield strength.
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Appendix A

Table 1. Displacements and rotation angle of each unit cell joint

Displacement [mm]
Rotation angle [rad]

Uniform strain fields

ε11 = 10
−3, ε22 = 10

−3, ε12 = 5 · 10
−4,

ε22 = ε12 = 0 ε11 = ε12 = 0 ε11 = ε22 = 0

u0 4.76 · 10−2 −3.39 · 10−5 7.42 · 10−6

v0 −3.38 · 10−5 4.76 · 10−2 4.75 · 10−2

ϕ0 1.65 · 10−3 1.65 · 10−3 5.33 · 10−4

u1 4.28 · 10−2 −1.02 · 10−4 6.52 · 10−6

v1 −3.38 · 10−5 4.76 · 10−2 4.24 · 10−2
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ϕ1 −1.65 · 10−3 −1.65 · 10−3 5.31 · 10−4

u2 4.76 · 10−2 −3.38 · 10−5 2.59 · 10−5

v2 −1.02 · 10−4 4.28 · 10−2 4.75 · 10−2

ϕ2 −1.65 · 10−3 −1.65 · 10−3 5.33 · 10−4

u3 5.24 · 10−2 3.38 · 10−5 7.42 · 10−6

v3 −3.38 · 10−4 4.76 · 10−2 5.25 · 10−2

ϕ3 −1.65 · 10−3 −1.65 · 10−3 5.33 · 10−4

u4 4.76 · 10−2 −3.38 · 10−5 −7.42 · 10−6

v4 3.38 · 10−5 5.24 · 10−2 4.75 · 10−2

ϕ4 −1.65 · 10−3 −1.65 · 10−3 5.33 · 10−4

Appendix B

The specific parameters of the matrices mentioned in the article are as follows

A(1−0) = 106












1.19 · 102 0 −4.99 · 10−2 −1.19 · 102 0 4.99 · 10−2

4.51 · 101 1.07 · 10−1 0 −4.51 · 101 1.07 · 10−1

1.45 · 10−3 4.99 · 10−2 −1.07 · 10−1 −9.36 · 10−4

Sym 1.19 · 102 0 −4.99 · 10−2

4.51 · 101 −1.07 · 10−1

1.45 · 10−3












(B.1)






u0
v0
ϕ0
u1
v1
ϕ1
u2
v2
ϕ2
u3
v3
ϕ3
u4
v4
ϕ4







= 10−6

































4.76 · 104 −3.38 · 101 1.49 · 101

−3.38 · 101 4.76 · 104 9.49 · 104

1.65 · 106 1.65 · 106 1.07 · 106

4.28 · 104 −1.02 · 102 1.30 · 101

−3.38 · 101 4.76 · 104 8.48 · 104

−1.65 · 106 −1.65 · 106 1.06 · 106

4.76 · 104 −3.38 · 101 5.19 · 101

−1.02 · 102 4.28 · 104 9.49 · 104

−1.65 · 106 −1.65 · 106 1.07 · 106

5.24 · 104 3.38 · 101 1.49 · 101

−3.38 · 101 4.76 · 104 1.05 · 105

−1.65 · 106 −1.65 · 106 1.07 · 106

4.76 · 104 −3.38 · 101 −1.49 · 101

3.38 · 101 5.24 · 104 9.49 · 104

−1.65 · 106 −1.65 · 106 1.07 · 106

































︸ ︷︷ ︸

B(15×3)







ε11
ε22
ε12







(B.2)
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